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Abstract

Images are used for both aerial and space imagery applications, including target

detection and tracking. The current problem concerning objects in geosynchronous

orbit is that they are dim and hard to resolve because of their distance. This work will

further the combined effort of AFIT and AFRL to provide enhanced space situational

awareness (SSA) and space surveillance. SSA is critical in a time when many countries

possess the technology to put satellites into orbit. Enhanced imaging technology

improves the Air Force’s ability to see if foreign satellites or other space hardware are

operating in the vicinity of our own assets at geosynchronous orbit. Image deblurring

or denoising is a crucial part of restoring images that have been distorted either

by movement during the capture process, using out-of-focus optics, or atmospheric

turbulence. The goal of this work is to develop a new blind deconvolution method for

imaging objects at geosynchronous orbit. It will feature an expectation maximization

(EM) approach to iteratively deblur an image while using the convergence of the

image’s variance as the stopping criteria
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Blind Deconvolution Method Of Image Deblurring Using

Convergence Of Variance

I. Introduction

This chapter describes the problem to be addressed by this research. Background on

the problem and research goals are also provided.

1.1 Motivation

Space Situational Awareness (SSA) is a key mission of the United States Air

Force Space Command. One aspect of SSA involves using both telescope networks

and radars to detect, identify, record and track all man-made objects orbiting the

earth. Knowing the exact locations of these orbiting objects in space is crucial for

future space operation safety. The SSA mission has become even more important

with recent events such as Iridium and Cosmos satellite collision and the Chinese

anti-satellite missile test in 2007, both of which created large swaths of space debris.

This debris, known as space junk, will be an ongoing risk to US satellites for years to

come as the orbits of the debris degrade toward Earth.

1.2 Background

Images are used for both aerial and space imagery applications, including target

detection and tracking. The current problem concerning objects in geosynchronous

orbit is that they are dim and hard to resolve because of their distance. This work will

further the combined effort of AFIT and AFRL to provide enhanced SSA and space

surveillance. SSA is critical in a time when many countries possess the technology to

put satellites into orbit and enhanced imaging technology will improve the Air Force’s

ability to see if foreign satellites or other space hardware are operating in the vicinity

of our own assets at geosynchronous orbit.
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Image deblurring or denoising is a crucial part of restoring images that have been

distorted either by movement during the capture process, using out-of-focus optics,

or atmospheric turbulence. There currently exist a number of methods for image

deblurring. These either use the short optical transfer function (OTF), which negates

atmospheric tilt caused by phase delay, or rely on a posteriori data in order to make

an estimate about the seeing parameter, which describes the effect of atmospheric

turbulence. The goal of this work is to develop a new blind deconvolution method for

long exposure imaging of objects at geosynchronous orbit without the need for any a

posteriori data.

The proposed research effort would attempt to produce a blind deconvolution

algorithm that produces useful results when processing astronomical scenes. This new

technique will capitalize on the statistics of the blurry image and the refined image

estimate, in an iterative approach to converge on the correct seeing parameter. This

approach has the potential to perform blind deconvolution on myriad data sources

and applications.

1.3 Research Goals

The expected result of this work is the development of a new approach for

blind deconvolution that improves on current methods for deblurring astronomical

data. Experiments conducted using simulated data will feature binary star images as

well as images of satellites blurred by atmospheric turbulence. The signal to noise

ratio of the data will also be varied via changes in the coherence parameter of the

simulated laser illumination. Experiments using measured data will use the value of

the estimated seeing parameter as a metric for success as ground truth measurements

of that parameter are available for each set of measured imagery.

1.4 Thesis Organization

Chapter II provides a description of the Maximum A Posteriori (MAP) es-

timation algorithm and related work, attempting to solve the blind deconvolution

2



problem using the long exposure atmospheric transfer function. Chapter III details

the methodology used in this research, and the simulations and experiments which

were conducted. Chapter IV yields the results from the simulations and experiments

described in Chapter III. Finally, Chapter V provides a summary for this research

and suggests potential areas for follow-on research.

3



II. Background

This chapter provides the technical background necessary for understanding the over-

all concepts of this research. First, a description of blind deconvolution is provided.

Next, related work is presented including an examination of both the MAP estimation

and APEX techniques. The APEX method, which is not an acronym, was developed

by Alfred Carasso [5]. The MAP algorithm is provided along with its derivation.

Examples are provided to demonstrate how these algorithms perform on fully illu-

minated datasets. Finally, examples are given to show how these algorithms are not

useful when processing atmospheric data, and an alternative method is suggested.

2.1 Blind Deconvolution

Deconvolution is the process of filtering a signal to compensate for an undesired

convolution. This convolution operation on the data is caused by the effect of atmo-

spheric turbulence. The goal of deconvolution is to recreate the signal as it existed

before the convolution took place. This usually requires that the characteristics of

the convolution are known. In this case it is assumed that the point spread function

(PSF) responsible for the blurring is known.

Blind deconvolution, on the other hand, is a deconvolution technique that per-

mits the recovery of the target scene from either a single or a set of blurred images.

This can still be achieved with a poorly determined or unknown PSF. In blind decon-

volution techniques, the PSF is estimated from the image or image set, allowing the

deconvolution to be performed.

Blind deconvolution can be performed iteratively, where each iteration improves

the estimation of the PSF and the scene, as in the case of MAP Estimation. It can also

be performed non-iteratively like the APEX algorithm, where the algorithm, based on

exterior information, extracts the PSF. Beginning with a good estimate of the PSF

is helpful for quicker convergence but is not necessary to recover the target scene.

4



2.2 Optical Transfer Function

2.2.1 Average Short-Exposure OTF. The average short-exposure OTF can

be achieved by either of two methods. The first method involves averaging several

short-exposure images together. The second requires that the tilt from several long-

exposure images is removed before they are averaged. Short exposure images are

created by integrating light from the target where the integration time does not exceed

1
100

second [8]. The form of the equation for the short exposure transfer function can

be seen here in (1).

H̄S(v) = exp

{
−3.44

(
λ̄fv

R0

)5/3
[

1− α
(
λ̄fv

D0

)1/3
]}

(1)

where α takes on the value unity for “near-field” and 1
2

for “far-field” propagation.

λ̄ is the wavelength of the light, v is its frequency and f is the focal length of the

imaging system. R0 is the atmospheric seeing parameter and D0 is the diameter of

the optical system. When α is set to zero, the equation takes on the form of the

long-exposure OTF, in (2).

The atmospheric coherence diameter R0, also known as the seeing parameter first

introduced by Fried [8], describes the image-degrading effects of the atmosphere.

Typical values of R0 at a mountain-top observatory might range from 5 cm under

poor visibility up to 20 cm under exceptional viewing conditions.

2.2.2 Long-Exposure OTF. Long exposure differs from short exposure with

respect to the integration time used. Long exposure images typically use integration

times much greater than 1
100

second. This increased integration time also introduces

wavefront tilt or wavefront fluctuations caused by the atmospheric winds [8]. The

equation for the long exposure transfer function can be seen here in (2).

H̄L(v) = exp

{
−3.44

(
λ̄fv

R0

)5/3
}

(2)

5



2.3 Statistics

The two statistics that are necessary for this thesis are the mean and variance

of a dataset. The mean or average value is used to determine the signal to noise ratio

to see if it is sufficient for this method to be able to converge properly.

2.3.1 Mean. The mean of a random variable is equal to its average or

expected value. The mean of the images used in this thesis is derived by summing

each pixel value in the image and dividing that total by the number of pixels present.

Mean(X) = E [X] =
1

N

N∑
i=1

Xi (3)

where X represents any random variable and E[·] represents the expected value op-

erator.

2.3.2 Variance. The variance of a random variable is equal to the mean

of the squared deviation of that variable from its expected value. The variance is,

therefore, a measurement of how much fluctuation exists within the values of that

variable. Likewise, the variance of the images can be determined by first finding the

mean or average pixel value, as described above. Next subtract the mean from each

of the pixel values and square the result. Next sum up all these results and divide by

the number of pixels to determine the average variance of the scene.

V ar(X) = E
[
(X − E[x])2

]
=

1

N

N∑
i=1

(Xi − µ)2 (4)

6



where X represents any random variable, (X − E[x]) is the deviation and µ is

the mean as in (3).

2.4 Signal To Noise Ratio

Signal to noise ratio (SNR) refers to the measure of a signal’s strength relative

to any background noise. If the SNR in question is not particularly strong (i.e. -

orders of magnitude), then it may be to difficult to properly isolate the signal from

the noise floor. SNR is typically represented as a ratio of either power or amplitude

of a signal with respect to the noise.

SNR =
Psignal
Pnoise

=

(
Asignal
Anoise

)2

(5)

where Psignal represents the power of the signal, Pnoise is the power of the noise level,

Asignal is the amplitude of the signal, and Anoise is the amplitude of the noise level.

Throughout this research and the simulations, SNR will be referred to as a ratio of

amplitudes squared.

2.5 Types Of Noise and Their Distributions

The three main types of noise distributions that will be examined in this paper

are Poisson, Gaussian, and negative binomial. Each noise type is dependent upon

either the sensor configuration or the source of the target.

2.5.1 Gaussian. The probability density function (pdf) for a continuous

Gaussian distributed random variable x is [9]

fX(x) =
1√
2πσ

e−(x−m)2/2σ2 −∞ < x <∞, σ > 0 (6)

where m is the mean and σ is the variance.

7



Figure 1: Gaussian distribution with mean = 0 and variance = 1.

When the majority of the noise is contributed by heat or electron leakage of the

imaging system, the noise leans toward a Gaussian distribution. A charge-coupled

device (CCD) is a device for the movement of electrical charges. It is in these CCD

arrays of imaging systems where heat transfer and electron leakage is likely to oc-

cur. In this case, because the frequency spectrum is continuous and uniform for all

frequency bands, the term white noise is used. Additive white Gaussian noise is the

most common type of noise model used in electronic systems [6].

2.5.2 Poisson. The probability mass function (pmf) for a discrete Poisson

distributed random variable x is [9]

P [X = k] ≡ pk =
αk

k!
e−α, k = 0, 1, ..., α > 0 (7)

where α is the mean and the variance.

8



Figure 2: Poisson distribution with mean and variance α = 10.5.

The noise tends to have a Poisson distribution when the dominant source of

noise comes from the target when the target is being imaged from a passive system.

As a general rule, photons impinging on a surface arrive in a random fashion after

being reflected from various surfaces. Even though the average number of photons

arriving per second is constant, the actual number for any given second can vary

considerably. Therefore this noise, often referred to as shot noise, is modeled with a

Poisson distribution [12].

2.5.3 Negative Binomial. The pmf for a discrete negative binomial dis-

tributed random variable x is [9]

P [X = k] ≡ pk =

(
k − 1

r − 1

)
pr(1− p)k−r, k = r, r + 1, ... (8)

where r is a positive number representing the number of successes in the same number

of independent Bernoulli trials and p is the probability of success. For example, r = 5

refers to 5 successes in 5 independent trials.

9



Figure 3: Negative binomial distribution with probability p = 0.4 and r represents 10

independent Bernoulli trials.

Data collected from active imagers, such as Light Detection and Ranging (LI-

DAR) systems, appear to have a negative binomial distribution caused by laser speckle

resulting from the mutual interference of sets of wavefronts acting both constructively

and destructively. The waves of light from the laser are coherent before they encounter

the target. Since most targets are not perfectly flat, the returning laser pulses are no

longer in phase. This means that the crests and troughs of the waves no longer line

up with each light pulse. The scattered waves now interfere constructively to make

bright points and destructively to make dark points. This light and dark pattern is

referred to as laser speckle [2].

2.6 Richardson-Lucy Algorithm

The Richardson-Lucy algorithm is an iterative deconvolution method for recov-

ering an image that has been blurred by a known point spread function [7]. The image

estimate is updated upon each iteration of the algorithm.

di =
∑
j

pijuj (9)

10



The objective is to determine the most likely image estimate, ûj, given the observed

image, di, and known PSF, pij, where û is an estimate of u. This leads to an equation

for ûj which can be solved iteratively according to

ût+1
j = ûtj

∑
i

di
ci
pij (10)

where

ci =
∑
j

pijû
t
j (11)

It has been demonstrated that if this iteration converges, it will converge to the

maximum likelihood solution [7].

2.7 Related Work

While there is much research in the area of blind deconvolution of astronomical

data, most researchers are trying to solve the problem using the short exposure atmo-

spheric model which negates phase delays due to atmospheric tilt [8]. This research,

however, will examine the effects of both the long and short exposure optical trans-

fer functions (OTFs). The diagram below is a visual depiction of what is going on

when imaging an object through our atmosphere. Equations in following subsections

explain the math behind the diagram.
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Figure 4: Astronomical imaging diagram

2.7.1 MAP Estimation. The MAP estimation method in [4] uses an iter-

ative optimization approach along with a prior distribution over the quantity being

estimated, to determine the estimate of the scene that maximizes the likelihood of it

matching the true scene. The iterative approach of the MAP estimation algorithm

researched for this paper relied on the average short exposure transfer function, below,

to model the atmospheric effects.

H̄S(v) = exp

{
−3.44

(
λ̄fv

R0

)5/3
[

1− α
(
λ̄fv

D0

)1/3
]}

(12)

The average OTF of the combined optical system and atmosphere, H̄sys, used in this

paper, can be modeled by

H̄sys(x, y) = Hopt(x, y)H̄S(x, y) (13)

where Hopt is the OTF of just the optical system and H̄S is the short exposure OTF

described by equation (12).
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A pixel of the noisy blurred image may be expressed as the discrete convolution

of H̄sys with the remote scene, o(x, y)

i(x, y) = H̄sys(x, y)o(x, y)

The probability of the detected image pixel d(x, y) given a particular observed

remote scene pixel o(x, y) can be described by (14). The probabilities are determined

by the the data distributions as seen in Section 2.5. This particular probability has a

negative binomial distribution.

P [d(x, y) = D(x, y)|o(x, y) = O(x, y)]

=
(d(x, y) +M)!

(d(x, y) + 1)!M !

(
1 +

M

i(x, y)

)−d(x,y)(
1 +

i(x, y)

M

)−M
(14)

where o is the estimate of the target object for a single iteration, M is the coherence

parameter of the laser light, d(x, y) represents the detected image and i(x, y) is the

added noise data [4].

fR0(R0) =

[
e−N

2(R0/ravg)

ravg/N2

]
(15)

is the assumed probability density function of the a posteriori data based on obser-

vation. N2 is a scaling parameter and is equal to the number of pixels in the image.

R0 is the seeing parameter and ravg represents the average value of R0 [4].

It is from taking the log of the sum of equations (14) and (15) that the total

log likelihood function [4] is formed:

L(o,R0) = ΣN
x=1Σ

N
y=1

[
ln

(
(d(x, y) +M)!

(d(x, y) + 1)!M !

)
− d(x, y)×

13



(
1 +

M

i(x, y)

)
−Mln

(
1 +

i(x, y)

M

)]
+ ln[fR0(R0)] (16)

It can be shown that the likelihood function [4] reduces to

L(o,R0) = ΣN
x=1Σ

N
y=1

(
d(x, y)ln[i(x, y]− [d(x, y) +M ]×

ln[i(x, y) +M ]

)
−N2 r0

ravg
− ln

[
ravg
N2

]
(17)

The maximization step [4] in which the derivative of L(o,R0) with respect to o

is taken and set to zero, yields the following

ΣN
x=1Σ

N
y=1

(
d(x, y)

i(x, y)

)
h̄sys(ξ − x, η − y) =

ΣN
x=1Σ

N
y=1

(
d(x, y) +M

M + i(x, y)

)
h̄sys(x− ξ, y − η) (18)

An update equation [4] can now be formed for the seeing parameter, similar to

the Richardson-Lucy approach.

onew(R0) = oold(R0)

ΣN
x=1Σ

N
y=1

(
d(x,y)
i(x,y)

)
h̄sys(ξ − x, η − y)

ΣN
x=1Σ

N
y=1

(
d(x,y)+M
M+i(x,y)

)
h̄sys(x− ξ, y − η)

(19)

where

i(x, y) = iold(x, y) = ΣN
ξ=1Σ

N
η=1h̄sys(x− ξ, y − η)oold(ξ, η) (20)

The MAP estimation [4] now becomes

onew(R0) = oold(R0)

ΣN
x=1Σ

N
y=1

(
d(x,y)
iold(x,y)

)
h̄sys(x− ξ, y − η)

ΣN
x=1Σ

N
y=1h̄sys(x− ξ, y − η)

(21)

2.7.2 APEX. The APEX method [5] is a general solution to a specific

limited class of blur. In order for the technique to be effective, the blur must be
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symmetric along with certain other mathematical characteristics. APEX is based on

a major simplifying assumption instead of an iterative approach. It’s fast and it does

not need to know the PSF because the algorithm calculates it directly from the image.

The equation for calculating the PSF directly from the image is

h(ξ, η) =

∫
R2

h(x, y)e[−2πi(ξx+ηy)]dxdy (22)

= e−α(ξ
2+η2)β , 0 ≤ α ≤ 1, 0 < β ≤ 1

where the α and β values are determined by the the specific application of the blurring

function. For example, medical imagery and astronomical imagery would use different

values for α and β to sharpen the image. It does require prior knowledge of these α and

β values used to blur the image. For example, the diffraction-limited optical transfer

function (OTF) for a perfect lens can be approximated with β = 3
4

and where α is

a function of the cutoff frequency. For long-exposure imaging through atmospheric

turbulence, β = 5
6

and α values are determined by atmospheric conditions [8].

2.7.3 Results. The following sets of images in Figures 5 and 6 show how the

MAP estimation technique works on a fully illuminated scene of a courtyard. Fully-

illuminated refers to the fact that a majority of the pixels in the image have a value

greater than zero and are discernible against a black background.
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(a) (b)

Figure 5: (a) is the truth data and shows the scene of the courtyard before any

distortion. (b) shows the scene with with blurring applied. The R0 value of the

simulated atmosphere is 10 cm and plot of the OTF can be seen in the Figure 6.

(a) (b)

Figure 6: (a) shows the side-view of the OTF that was convolved with the courtyard

image to cause the blur. (b) depicts the recovered scene from the blurred image after

1000 iterations of the MAP estimator.

Now that this method has been shown to have satisfactory results using fully il-

luminated scenes, let’s examine its ability to accurately estimate the seeing parameter

on astronomical datasets.
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(a) (b)

Figure 7: (a) shows what the binary star data looks like without any blur. The stars

are separated from each other by 1 pixel. (b) shows the same binary stars blurred

with the same OTF in Figure 6.

Figure 8: This image shows the difficulty that the MAP Estimation algorithm had

while trying to recover the scene.

The difficulty the MAP estimator has while processing sparse data can be seen

in the image above. It is due to the way the a posteriori information is used. Recall

the N2 scaling factor from equation (15). It turns out that this scaling factor, based

on the number of pixels in the scene, is only accurate for fully illuminated scenes.

In the case of astronomical data sets where the actual data is sparse, the scaling
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factor drives the a posteriori data to zero, making it useless. This can be seen in the

following image.

Figure 9: This image shows the difficulty that the MAP Estimation algorithm had

while trying to recover the scene. This plot shows that the log-likelihood value which

is way off from the 10 cm that it should be. Here the weighting factor, N2 is set to

the number of pixels in the scene, 16, 384.

The next two images in figures 10 and 11 show how varying the value of N

can result in better estimations. The correct value for R0 is 10 cm and is somewhere

between the estimates seen in these examples. The first guess of using a scaling factor

of 10 does not plateau but seems to increase asymptotically. The next guess of 50

causes the estimator to converge prematurely. One can obtain the correct value of R0

by messing with these settings manually over a period of trial and error. However,

these results are image dependent and are not a viable means for automatic estimation.
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Figure 10: This image shows result of the MAP Estimation algorithm when N was

set to 10.

Figure 11: This image shows result of the MAP Estimation algorithm when N was

set to 50.

The APEX method is not without its own difficulties when dealing with astro-

nomical data. Figures 12 and 13 demonstrate how varying the space between the

stars has a drastic effect on the ability of the algorithm to accurately estimate R0.

Figures 12 and 13 take the row of interest containing the binary stars and perform a

Fourier transform to examine the spatial frequency content. Next they compare the

amplitude of the spatial frequencies to the result of the APEX algorithm.
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(a) (b)

(c)

Figure 12: (a) shows the blurry image of a binary star pair separated by one pixel (b)

is the result of taking a slice of the image through the binary stars and plotting its

amplitude (c) shows the result of taking the Fourier transform of the data (subfigure

b) and applying the APEX algorithm. Both the spatial frequency of the true data

and the APEX estimation are shown for comparison.
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(a) (b)

(c)

Figure 13: (a) shows the blurry image of a binary star pair separated by four pixels

(b) is the result of taking a slice of the image through the binary stars and plotting its

amplitude (c) shows the result of taking the Fourier transform of the data (subfigure

b) and applying the APEX algorithm. Both the spatial frequency of the true data

and the APEX estimation are shown for comparison.

The estimation in Figure 12 was accurate but it already started to deviate from

the truth data by the time the stars were separated by three pixels, as seen in Figure

13. This is due to the fact that objects really close to one another appear as a single

point source. As soon as the separation becomes apparent to the APEX algorithm,

it has difficulty with multiple point sources.

MAP estimation was demonstrated on fully illuminated photographs and both

the MAP estimation and APEX blind deconvolution methods were applied to as-
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tronomical data sets. These simulations, both with full-scene and sparse datasets,

looked at only one particular optical system. The telescope receiver aperture was

20 centimeters and an atmospheric seeing parameter of 10 centimeters was assumed.

In this particular case, the MAP estimation performed well on photographic images.

However, both methods were shown not to be reliable when estimating astronomical

data sets, each for their own reasons.

MAP estimation wasn’t accurate because the scaling factor of the a posteriori

calculation fails in the absence of fully illuminated data. As soon as there appear to

be more than one point source, the APEX method breaks down as well. It’s for these

reasons that the two methods explored in this chapter are not an effective means for

deblurring astronomical data.

Instead, Chapter III proposes a new technique in which no information about

the point spread function or seeing parameter is needed. This is the usual case

when dealing with astronomical data. The proposed research effort would attempt to

develop a blind deconvolution method that produces useful results when processing

astronomical scenes. The new technique will compare the statistics of a blurry image

to an estimate of the actual image, in an iterative approach, in order to determine

the true atmospheric seeing parameter.

22



III. Research Methodology

This chapter deals with the convergence of variance method. It briefly details the

approach below to improve upon current work in the area of blind deconvolution.

Next, the expectation maximization steps are discussed and derivations for both the

Poisson and Gaussian noise cases are provided. Next the coarse and fine search

approach to finding the best estimated R0 is discussed. Finally, the areas of interest

which were covered under this research for the convergence of variance method are

discussed. Example data results for these areas are provided in chapter 4. These areas

include the effect of SNR, sparsity of the scene, varying seeing parameter values, and

exposure type.

3.1 Convergence of Variance Method

The convergence of variance (COV) method that was developed for this research

has two main parts. The first part of this method involves deriving the expectation

maximization equations needed for a particular noise distribution of the data. This

will allow for the correct estimations of the images to be made. The next part of this

method involves using the variance of the observed image as the stopping criteria for

the expectation maximization algorithm.

The first step is to acquire an astronomical image and compute its variance.

Next, in an iterative Richardson-Lucy approach, the variance of the observed image

and the variance of the latest estimate of the image are compared. However, unlike

in the Richardson-Lucy approach, here the PSF does not need to be known. For

the first estimate, the seeing parameter estimate is set equal to 1. This process will

continue until the length of the iterations, needed to converge, reaches a predetermined

threshold set by the image analyst. Once, this threshold is met, the value of the seeing

parameter estimate is incremented and the process repeats. Once the variance of the

image estimate converges with the variance of the acquired astronomical image, the

best estimate of the seeing parameter is known and the image can be seen as it would

appear without the blurring effects of the atmosphere.

23



3.2 Expectation Maximization (EM) Algorithm

An EM algorithm is widely used in the iterative calculations of maximum likeli-

hood estimates. The EM algorithm is not a single algorithm but rather a framework

or approach to solving a problem [3]. During each iteration or estimate refinement,

the EM algorithm goes through both an expectation and a maximization step. The

initial values or parameters are estimated iteratively until convergence. Other good

sources for papers which use an EM approach to blind deconvolution can be found

in [1, 4, 10, 11]. The EM derivations for images containing Gaussian and Poisson

random variables are included below. An example of EM, using negative-binomial

random variables, is found in Chapter 2 Section 7.1, MAP estimation.

3.2.1 EM Steps. Here are the main steps in the EM process. These steps

are outlined below in each of the derivations.

1. Obtain statistical model for the measured (incomplete) data, d

2. Obtain statistical model for the complete data, d̃

3. Formulate the complete data log-likelihood, L

4. Compute expectation step

5. Compute maximization step

6. Compute update equation

3.2.2 Poisson EM Derivation.

Step 1: Obtain statistical model for the measured data:

E [d(x, y)] = i(x, y) =
N∑

z,w=1

o(z, w)h(x− z, w − y)

P [d(x, y)] =
i(x, y)d(x,y)e−i(x,y)

d(x, y)!
(23)

The measured data is an image in which each pixel is a realization of a Poisson ran-

dom variable whose mean is the result of a convolution. h is a linear operator that
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transforms the true image, o, into the mean of the noisy blurred image, i.

Step 2: The complete data: Invent a set of mythical (complete) data, d̃ and a re-

lationship between this set and the measured (incomplete) data, d. We choose the

complete data to be related to the incomplete data through equation (24).

d(x, y) =
∑
z,w

d̃(x, y, z, w) (24)

Statistical model for the complete data: Select a statistical model for the complete

data such that it produces the statistical model for the incomplete data through their

defined relationship. We chose the complete data to be Poisson as well since the sum

of Poisson random variables is also Poisson.

E
[
d̃(x, y, z, w)

]
= o(z, w)h(x− z, y − w)

E

[∑
z,w

d̃(x, y, z, w)

]
=

∑
z,w

E
[
d̃(x, y, z, w)

]
∑
z,w

o(z, w)h(x− z, y − w) = E [d(x, y)] (25)
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Step 3: Formulate the complete data log-likelihood:

P
[
d̃(x, y, z, w)

]
=

o(z, w)h(x− z, y − w)d̃(x,y,z,w)e−o(z,w)h(x−z,y−w)

d̃(x, y, z, w)!

d̃ = d̃(x, y, z, w)∀(x, y, z, w) ∈ I(1, N)

P
[
d̃
]

=
N∏

x,y,z,w=1

o(z, w)h(x− z, y − w)d̃(x,y,z,w)e−o(z,w)h(x−z,y−w)

d̃(x, y, z, w)!

L(o, h) = ln
(
P
[
d̃(x, y, z, w)∀(x, y, z, w) ∈ I(1, N)

])
=

N∑
x,y,z,w=1

d̃(x, y, z, w) ln(o(z, w)h(x− z, y − w))

− o(z, w)h(x− z, y − w)− ln(d̃(x, y, z, w)!) (26)

Step 4: Find the expected value of the complete data log-likelihood.

E
[
L(o, h)|d(x, y), oold, h

]
= Q(o, h)

=
∑
x,y,z,w

E
[
d̃(x, y, z, w)|d(x, y), oold, h

]
∗ [ln(o(z, w)h(x− z, y − w))]− o(z, w)h(x− z, y − w)

− E
[
ln(d̃(x, y, z, w)!|d(x, y), oold

]
(27)

Define two statistically independent Poisson variables that adhere to the relationship

defined in (24).

d1 = d̃(x, y, z0, w0)d2

=
∑
z,w

d̃(x, y, z, w)− d̃(x, y, z0, w0) (28)

Define the expected value and probability of Poisson randomly distributed datasets.

Here is the simple case of two arbitrary Poisson variables. It’s easier to determine
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the probability when summing two Poisson variables, than it would be for a Poisson

variable for each pixel in the scene. Since the sum of Poissons is also Poisson, this

case can be extented to n Poisson variables.

E[d1] = m1

E[d2] = m2

d(x, y) = d = d1 + d2

P [d1, d2] =
md1

1 e
−m1

d1!

md2
2 e
−m2

d2!
, d1, d2 = 0, 1, 2, ...

d2 = d− d1

P [d, d1] =
md1

1 e
−m1

d1!

m
(d−d1)
2 e−m2

(d− d1)!
(29)

Next, find the probability of the complete data given the measured dataset. This

is the case in which each pixel is a Poisson random variable and d̃ is the sum of all

variables.

P [d1|d] = P [d, d1]/P [d]

= (d!)
md1

1 e
−m1

d1!

m
(d−d1)
2 e−m2

(d− d1)!
/[(m1 +m2)

de−(m1+m2)]

P [d1|d] =
(d!)md1

1

(m1 +m2)dd1!

m
(d−d1)
2

(d− d1)

=
(d!)md1

1

(m1 +m2)(d1+d−d1)d1!

m
(d−d1)
2

(d− d1)!

P [d1|d] =
(d!)(m1/[m1 +m2])

d1

d1!

(m2/[m1 +m2])
(d−d1)

(d− d1)!
E[d1|d] = d(m1/[m1 +m2]) (30)

E
[
d̃(x, y, z, w)|d(x, y), oold, h

]
=

d(x, y)oold(z, w)h(x− z, y − w)

iold(x, y)
(31)
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Now substitute (31) into Q(o,h) from (27).

Q(o, h) =
∑
x,y,z,w

(
d(x, y)oold(z, w)h(x− z, y − w)

iold(x, y)

∗ [ln(o(z, w)h(x− z, y − w))]− o(z, w)h(x− z, y − w)

− E[ln(d̃(x, y, z, w)!)|d(x, y, o)old, h]

)
(32)

Step 5: Maximize the result by first taking the derivative and then setting it equal to

zero. The variables z0 and w0 are specific locations of the generic variables, z and w.

∂Q(o, h)

∂o(z0, w0)
=

∑
x,y,z,w

(
∂

∂o(z0, w0)

∗ d(x, y)oold(z, w)h(x− z, y − w)

iold(x, y)
ln(o(z, w)h(x− z, y − w))

− ∂

∂o(z0, w0)
o(z, w)h(x− z, y − w)

− ∂

∂o(z0, w0)
E[ln(d̃(x, y, z, w)!)|d(x, y)oold]

)
(33)

Now that the derivative has been taken, most terms go away and the remaining term

is set equal to zero

0 =
∑
x,y,z,w

∂

∂o(z0, w0)
E[ln(d̃(x, y, z, w)!)|d(x, y)oold]

∂

∂o(z0, w0)
o(z, w)h(x− z, y − w) = δ(z − z0, w − w0)h(x− z, y − w)
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∂

∂o(z0, w0)
∗ d(x, y)oold(z, w)h(x− z, y − w)

iold(x, y)

∗ [ln(o(z, w)h(x− z, y − w))]

=
d(x, y)oold(z, w)h(x− z, y − w)

iold(x, y)

∂

∂o(z0, w0)
ln(o(z, w))

=
d(x, y)oold(z, w)h(x− z, y − w)

iold(x, y)

1

∂o(z, w)

∂o(z, w)

∂o(z0, w0)

=
d(x, y)oold(z, w)h(x− z, y − w)

iold(x, y)

1

∂o(z, w)
δ(z − z0, w − w0)

(34)

Maximize Q with respect to h(z0, w0).

∂Q(o, h)

∂h(z0, w0)
=

∑
x,y,z,w

d(x, y)oold(z, w)h(x− z, y − w)

iold(x, y)

∗
[
δ(x− z − z0, y − w − w0)

h(x− z, y − w)

]
− δ(x− z − z0, y − w − w0)o(z, w)

(35)

Now, apply the sifting property of the Dirac function:

∂Q(o, h)

∂h(z0, w0)
=

∑
x,y

d(x, y)oold(z, w)h(x− z, y − w)

iold(x, y)

1

h(z0, w0)
− o(x− z0, y − w0)

∂Q(o, h)

∂h(z0, w0)
= 0

0 =
∑
x,y

d(x, y)oold(z, w)h(x− z, y − w)

iold(x, y)

1

h(z0, w0)
− o(x− z0, y − w0)

(36)
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Find the new estimate for the object

∑
x,y

o(x− z0, y − w0) =
∑
x,y

d(x, y)oold(z0, w0)h(x− z, y − w)

iold(x, y)

1

h(z0, w0)

h(z0, w0) =
h(z0, w0)

∑
x,y

d(x,y)oold(z,w)h(x−z0,y−w0)
iold(x,y)∑

x,y o(x− z0, y − w0)

onew(z0, w0) =
oold(z0, w0)

∑
x,y

d(x,y)h(x−z0,y−w0)
iold(x,y)∑

x,y h(x− z0, y − w0)
(37)

Step 6: Form the update equation for estimated object

We chose h summing to 1 to be a constraint since this will ensure the conservation of

energy in the system. That is, both the true image and the estimated image would

both contain the same number of photons.

Choose
∑
x,y

h(x− z0, y − w0) = 1

onew(z0, w0) = oold(z0, w0)
∑
x,y

d(x, y)h(x− z0, y − w0)

iold(x, y)
(38)

Show that the OTF update sums to 1

h(z0, w0) =
h(z0, w0)

∑
x,y

d(x,y)oold(x−z0,y−w0)
iold(x,y)∑

x,y o(x− z0, y − w0)

=
h(z0, w0)

∑
x,y

d(x,y)oold(x−z0,y−w0)
iold(x,y)∑

x,y d(x, y)∑
x,y

h(z0, w0) =

∑
x,y h(z0, w0)

∑
x,y

d(x,y)oold(x−z0,y−w0)
iold(x,y)∑

x,y d(x, y)

=

∑
x,y

(x,y)
iold(x,y)

∑
x,y o

old(x− z0, y − w0)h(z0, w0)∑
x,y d(x, y)

(39)
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iold(x, y) =
∑
x,y

oold(x− z0, y − w0)h(z0, w0)

∑
x,y

hnew(z0, w0) =

∑
x,y d(x, y)∑
x,y d(x, y)

= 1 (40)

3.2.3 Gaussian EM Derivation.

Step 1: Obtain statistical model for the measured data:

E [d(x, y)] = i(x, y) =
N∑

z,w=1

o(z, w)h(x− z, w − y)

P [d(x, y)] =
1√
2πσ

e
(d(x,y)−i(x,y))2

2σ2 (41)

The measured data is an image in which each pixel is a realization of a Gaussian

random variable whose mean is the result of a convolution. h is a linear operator that

transforms the true image, o, into the mean of the noisy blurred image, i.

Step 2: The complete data: Invent a set of mythical (complete) data, d̃ and a re-

lationship between this set and the measured (incomplete) data, d. We choose the

complete data to be related to the incomplete data through equation (41).

d(x, y) =
N∑

z,w=1

d̃(x, y, z, w) (42)

Statistical model for the complete data: Select a statistical model for the complete

data such that it produces the statistical model for the incomplete data through their

defined relationship. We chose the complete data to be Gaussian as well since the

sum of Gaussian random variables is also Gaussian.
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E
[
d̃(x, y, z, w)

]
= o(z, w)h(x− z, w − y)

P
[
d̃(x, y)

]
=

1√
2πσ

e
(d̃(x,y,z,w)−o(z,w)h(x−z,w−y))2

2σ2 (43)

Step 3: Formulate the complete data log-likelihood:

d̃ = d̃(x, y, z, w)∀(x, y, z, w) ∈ I(1, N)

P
[
d̃
]

=
N∏

x,y,z,w=1

1√
2πσ

e
(d̃(x,y,z,w)−o(z,w)h(x−z,w−y))2

2σ2

L(o, h) = ln

(
P
[
d̃(x, y, z, w)∀(x, y, z, w) ∈ I(1, N)

] 1√
2πσ

)
=

N∑
x,y,z,w=1

(d̃(x, y, z, w)− o(z, w)h(x− z, w − y))2

2σ2
ln

(
1√
2πσ

)
(44)

Step 4: Find the expected value of the log-likelihood.

Q(o) = E[L(o)|d(x, y), oold(z, w)] =
∑
x,y,z,w

(
− E[(d̃(x, y, z, w)|oold(z, w), d(x, y))2]

+ 2E[(d̃(x, y, z, w)|oold(z, w), d(x, y))]

+ o(z, w)2h(x− z, y − w)2
)

(45)

Now find this piece of (46) by defining two sets of Gaussian random variables in (48).

E
[
d̃(x, y, z, w)|d(x, y), o(z, w)

]
(46)

First, the two sets of Gaussian randomly distributed data are defined below.

d = d1 + d2

d1 = d̃(x, y, z0, w0)

d2 =
N∑

z,w=1

d̃(x, y, z, w)− d̃(x, y, z0, w0) (47)
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The mean and variances for the complete data are provided below.

(48)

E[d1] = m1, V ar[d1] = σ2

E[d2] = m2, V ar[d2] = σ2(n2 − 1)

d(x, y) = d = d1 + d2 (49)

Now the probability of complete data is calculated

P [d1, d2] =
1√
2πσ

exp

(
−(d1 −m1)

2

2σ2

)
1

σ
√

2π(n2 − 1)
exp

(
− (d2 −m2)

2

2σ2(n2 − 1)

)
P [d, d1] =

1

2πσ2
√
n2 − 1

exp

(
−(d1 −m1)

2

2σ2

)
exp

(
−(d− d1 −m2)

2

2σ2(n2 − 1)

)
(50)

The probability of complete data can be determined, given the set of measured data

P [d1|d] =

1
2πσ2

√
n2−1 exp

(
− (d1−m1)2

2σ2

)
exp

(
− (d−d1−m2)2

2σ2(n2−1)

)
1√

2πσn
exp

(
− (d−d1−m2)2

2σ2n2

)
P [d1|d] =

√
2n

2σ
√
π(n2 − 1)

exp

(
(d− d1 −m2)

2

2σ2n2

)
∗ exp

(
−(d1 −m1)

2

2σ2

)
exp

(
−(d− d1 −m2)

2

2σ2(n2 − 1)

)
P [d1|d] =

√
2n

2σ
√
π(n2 − 1)

exp

(
−(n2d1 − n2m1 +m2 +m1 − d)2

2n2σ2(n2 − 1)

)
P [d1|d] =

√
2n

2σ
√
π(n2 − 1)

exp

(
−
(
d1 −

(
m1 +

(−m2−m1+d
n2

)))2
2n2σ2(n2−1)

n4

)

E[d1|d] = m1 +
(d−m1 −m2)

n2
(51)
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Substituting these results back into the previous form of the equation yields the

following result.

E[d̃(x, y, z, w)|oold(z, w), d(x, y)] = oold(z, w), h(x− z, y − w)

+

(
−(iold(x, y)− oold(z, w)h(x− z, y − w))

n2

)
−

(
oold(z, w)h(x− z, y − w) + d(x, y)

n2

)
= oold(z, w)h(x− z, y − w) +

(d(x, y)iold(x, y))

n2

(52)

Step 5: Maximize the result by taking the derivative and setting it equal to zero.

∂Q(o)

∂o(z0, w0)
=

∑
x,y,z,w

∂Q(o)

∂o(z0, w0)

(
− E[(d̃(x, y, z, w)|oold(z, w), d(x, y))2]

+ 2E[(d̃(x, y, z, w)|oold(z, w), d(x, y))]
o(z, w)h(x− z, y − w)

2σ2

+ o(z, w)2h(x− z, y − w)2

)
(53)

Equation (55) is the first piece of (54) and doesn’t depend on o(z0, w0), so taking

∂Q(o)
∂o(z0,w0)

and setting it equal to 0 yields:

∑
x,y,z,w

∂

∂o(z0, w0)
E[(d̃(x, y, z, w)|oold(z, w), d(x, y))2] = 0

(54)

Equation (56) is the second piece of (54).

∑
x,y,z,w

∂

∂o(z0, w0)

[
2o(z, w)h(x− z, y − w)

2σ2
∗

(
oold(z, w)h(x− z, y − w) +

(d(x, y)− i(x, y))

n2

)]
=
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∑
x,y,z,w

[
2o(z − z0, w − w0)h(x− z, y − w)∗

(
oold(z, w)h(x− z, y − w) +

(d(x, y)− i(x, y))

n2

)]
=

∑
x,y

[
2oold(z, w)h(x− z0, y − w0)

2+

(
h(x− z0, y − w0) ∗

(d(x, y)− i(x, y))

n2

)]
= (55)

Equation (57) is the third and final piece of (54).

∑
x,y,z,w

[
∂o(z, w)2h(x− z, y − w)2

∂o(z0, w0)

]
=

∑
x,y,z,w

[
2∂(z − z0, w − w0)o(z, w)h(x− z, y − w)2

]
=

∑
x,y

[
2o(z0, w0)h(x− z0, y − w0)

2
]

(56)

Substituting the results of (55),(56), and (57)back into (54) yields:

0 =
∂Q(o)

∂o(z0, w0)
=

∑
x,y

2oold(z0, w0)h(x− z0, y − w0)
2

2σ2

+

(
h(x− z0, y − w0)

(d(x,y)−i(x,y))
n2

)
2σ2

−
(

2o(z0, w0)h(x− z0, y − w0)
2

2σ2

)
∑
x,y

2o(z0, w0)h(x− z0, y − w0)
2

2σ2
=

∑
x,y

2oold(z0, w0)h(x− z0, y − w0)
2

2σ2
+(

h(x− z0, y − w0)
(d(x,y)−i(x,y))

n2

)
2σ2

(57)
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Step 6: This results in the following update equation:

onew(z, w) = oold(z, w) +

∑N
x=1

∑N
y=1 h(x− z, y − w)(d(x, y)− iold(x, y))

2n2
∑N

x=1

∑N
y=1 h(x− z, y − w)2

(58)

3.3 Using Coarse and Fine Convergence

Using coarse convergence followed by fine convergence is a method for quickly

and accurately identifying the seeing parameter and estimate of the actual image.

During the coarse convergence step, the selected EM algorithm performs iterative

image estimations while searching through integer values or multiples of R0, if the

user chooses, until the algorithm converges. For example, one could do a coarse search

for R0 by multiples of two to find an estimate quicker. Next, the fine convergence

begins by starting its search just before the coarse estimation value of R0. This time,

however, the algorithm performs iterations using decimal values of R0 to narrow in

on the best estimate.

This two step approach serves two distinct purposes. The first is to quickly

narrow down the search area for R0. The second purpose is to refine the search for

a more accurate result for an estimated value of R0, since not all R0 values will be

integers. Figure 14 demonstrates the process of first searching through integer values

of R0 before refining the search area.

Figure 14: Diagram of the coarse and fine search method
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Figures 15 through 17 demonstrate this process using simulated starfield data.

Figure 15: Short exposure blur caused by atmospheric distortion with seeing param-

eter of 4.3 cm and Poisson noise distribution.

Figures 16 and 17 each contain two images. The plot on the left is a snapshot

of the convergence process and the image on the right reflects the updated estimate

of the image based on the level of convergence. The variance of the estimated image

converges with the variance of the measured image with each iteration and the image

on the right is updated. There is also some key data provided with the convergence

plots. The current R0 search value, displayed above the plot, the mean squared error

and the estimated number of iterations needed to converge are also updated upon

each iteration. If the iterations needed exceeds the user defined level, the R0 search

value is increased and the process begins again. Once the iterations needed reaches

less than 1 the process is complete and the COV method displays both the coarse and

fine image results.
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Figure 16: Coarse search by R0 increments of 1 passed up the correct value of R0 =

4.3 cm and instead stops at the best coarse value of 5 cm.

Figure 17: Fine search by R0 increments of .1 allows for the correct value of R0 = 4.3

cm to be found.

Here are some more results of the coarse and fine search method. The image

below in Figure 18 depicts the true scene along with the image containing atmospheric

distortion, as viewed by an optical system. Note that the two stars in the middle

appear as one in the blurred image.
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Figure 18: Short exposure blur caused by atmospheric distortion with seeing param-

eter of 5 cm.

Figures 19, 20, and 21 below show the results of the coarse and fine conver-

gence estimates on three sets of Gaussian distributed images with differing seeing

parameters.

Figure 19: Side-by-side comparison using simulated star field data. Actual R0 value

is 5 cm.
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Figure 20: Side-by-side comparison using simulated star field data. Actual R0 value

is 10 cm.

Figure 21: Side-by-side comparison using simulated star field data. Actual R0 value

is 15 cm.

In the first two figures, the coarse search was right on but in the third it overshot

the correct value of R0. The fine search was able to estimate the correct value to within

0.1 cm. These variations are all due to the the SNR ratios of the images. Both the

coarse and fine search estimates are more accurate as the SNR improves.

3.4 Image Parameters Of Interest

Some key parameters which may effect the results of the COV method include

the SNR and sparsity of the data, the atmospheric seeing parameter value at the time

the image was acquired and the exposure type. These parameters will be explored

more deeply along with sample data to support the ideas in Chapter 4. The SNR

of the data may affect the ability of the COV method to accurately estimate R0.

40



Different values of R0 may also bias the results. Sparse and full scene data refer to

the amount of illuminated pixels in the scene. If the COV method can produce valid

results for sparse data as well as full scene data, then it will have shown improvement

over the MAP estimation and APEX techniques explored in Chapter 2. Finally the

exposure time of the images will be examined to see if it also has any bearing on the

ability of the COV method to converge and determine the best estimate of R0.
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IV. Results and Analysis

Chapter 4 examines the effects of SNR, sparsity of the scenes, varying seeing parameter

values, and exposure type and provides example simulated data. It also summarizes

the results of the COV method as compared to the previous work researched in the

MAP estimator and APEX algorithm. Next the results are provided for the COV

method used on laboratory measured data and the idea of using the COV method

on other data types is advocated. Finally, limiting factors in the effectiveness of the

COV method are explored.

4.1 SNR Effects

SNR plays a key role on the convergence of the COV method. If the SNR is

too low, the COV method tends to converge relatively quickly at an R0 value which

is less than the known seeing parameter of the simulated atmosphere. This quick

convergence with few iterations at that R0 value leads to heavily blurred results.

As long as the SNR is high enough, the COV method does not have an issue with

convergence. Figure 22 contains an image of a courtyard along the same image as it

would appear if blurred by the short exposure OTF and with added Poisson noise.

The same effect can be demonstrated with the starfield datasets, but the lack of

illuminated pixels in the scene make it more difficult to detect the differences by eye.

(a) (b) (c)

Figure 22: (a) shows the image of the true scene, (b) contains the same scene blurred

with the short exposure OTF, and (c) shows the blurred image with Poisson noise.
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Figure 23 shows the difference in performance of the COV method when the

SNR of the observed image is varied. The SNR is scene dependent and the minimum

SNR value needed to converge properly was not explored for the purposes of this

research. The R0 values in Figure 23 are the estimated values. The true value for R0

is 5 cm.

(a) SNR = 5.7 dB (b) SNR = 11.2 dB

(c) SNR = 19.4 dB

Figure 23: (a) The COV method estimated a lower R0 value and converged early

without enough iterations to deblur the image because the SNR was only 5.7 dB, (b)

the COV method finds correct R0 value but converges after few iterations because of

low SNR of 11.2 dB, (c) SNR was increased to 19.4 dB which resulted in an image

estimate that closely resembles the true image

4.2 Effect Of Different Seeing Parameters

Varying the seeing parameter values of the simulated atmosphere seemed to

have no real effect on the results of the image reconstruction. The only thing that

changed was the COV method took a longer amount of time to converge. The images
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below in Figure 24 show the true scene and the effects of atmospheric turbulence.

The next set of images in Figure 25 show the results of the same simulated star fields

when using three different R0 values.

Figure 24: Here is the image of the true scene with no blurring and the same scene

after being convolved with the short exposure OTF with R0 = 10 cm.
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(a) Actual R0 = 5cm (b) Actual R0 = 10cm

(c) Actual R0 = 15cm

Figure 25: These three images have a Gaussian distribution and were blurred with

a short exposure OTF. The SNR was held constant at 18.6 dB for all three images.

The images show the estimated R0 values after being deblurred, while the labels show

the actual R0 values.

4.3 Short Vs Long Exposure

Exposure refers to the amount of light gathered or the integration period of the

image. Short exposure images are typically formed by taking snapshots of a target

with less than a second of integration time for the light gathering of the optical system.

Long exposure images, on the other hand, are usually formed by collecting light for

many seconds.

Short exposure images of astronomical scenes are far clearer as the change in

the seeing parameter is negligible in such a short time. They also do not contain any

blurring effects caused by the motion of the earth and the target in question.
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The image below in Figure 26 depicts the true scene along with the image,

containing atmospheric distortion, as viewed by an optical system. Note that the two

stars in the middle appear as one in the blurred image.

Figure 26: Long exposure blur caused by atmospheric distortion with seeing parameter

of R0 = 5 cm.

The simulated data below in Figures 27 and 28 contains both short and long

exposure image estimates of the same star field data set. The COV method attempts

to deconvolve both sets of images and estimate the true scene. The image has a

Gaussian distribution and the actual R0 value is 5 cm.

Figure 27: Short exposure(L), long exposure(R). Side-by-side comparison of the de-

blurred results using simulated star field data.
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Figure 28: Short exposure(L), long exposure(R). Side-by-side comparison of the de-

blurred results using simulated star field data.

The COV method was capable to accurately estimate the short exposure image

with the binary pair clearly visible. The long exposure image, containing motion had

too much blur and the COV method was unable to distinguish between the two stars

in this case. However, it is brighter than the surrounding stars of the same intensity,

indicative of its larger size.

4.4 Sparse Vs Full Scene Data

Sparse and full scene data refer to the amount of illuminated pixels in the scene.

For the purpose of this research, an image with over half of its pixels illuminated is

referred to as full scene and any image containing less is referred to as sparse data.

Though there are many images that range in sparsity, this research focused on the

extremes. The data includes binary and small star clusters as well as photographic

images of a courtyard.

Chapter 2 showed how the MAP estimator was effective on full scene data

but and both the MAP estimator and APEX algorithms were not accurate when

processing sparse datasets. On the other hand, the COV method in this research has

demonstrated effectiveness with both full scene data as seen in section 4.1 and sparse

data in sections 4.2 through 4.3.
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4.5 Results of Laboratory Data

Sections 1 through 3 confirmed the ability of the COV algorithm where Chapter

2 showed how the MAP estimator and APEX algorithm failed. It featured simulated

data to produce results which demonstrated the desired effects for each section. Now a

set of measured data obtained under laboratory conditions is provided to give support

that the COV method will work on real measured data.

The data in Figure 29 is intended to represent a large celestial object such as

the moon. It was captured by mounting an LED behind a bar chart in a dark room.

The focusing lens was adjusted to mimic the effects of the atmosphere of the local

area in Dayton Ohio, which is typically between 4 and 6 cm on a clear night.

Figure 29: Target object as observed by optical system

Since this data is measured there is no way to adjust the SNR, sparsity of the

scene or the OTF. The only parameter that can be manipulated is the amount of

iterations that the image analyst will permit the algorithm to perform. Figures 30

through 32 show the effect that the number of iterations has on the ability of the

algorithm to find the best estimate of R0 and to deblur the image.
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Figure 30: The algorithm converged late because the maximum iteration allowed was

too low. This image pair demonstrates the result if the user sets the max iteration

level to 200.

(a) (b)

Figure 31: The algorithm still converged late because the maximum iteration allowed

was too low. These images are the result of the max iteration level set to 700 but

they already show improvement over figure 30.
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(a) (b)

Figure 32: The algorithm was given enough iterations to converge at the best estimate

of R0 and therefore the best estimate of the target object. The max iteration level was

set to 1500 but it converged way before reaching this maximum number. Therefore

the algorithm would also converge at the same point for this dataset at any iteration

level above 1500.

4.6 COV Method’s Utility For Other Data Types

This research focused only on simulated and laboratory acquired electro-optical

imagery, but this algorithm should in theory work on other types of data. As long as

the blurring function and noise can be modeled it should not matter if the data is in

photons or represented in the form of spectral or radar frequency returns to name a

couple. As long as the correct EM equations are used, based on the distribution of

the variance in the image, the COV method should be able to estimate the the target

object.

4.7 Limiting Factors That Effect Results

SNR and integration time and their effects are analyzed in this section.

4.7.1 Data SNR. The SNR of an observed image is not something that can

be directly controlled by the image analyst. It is determined by the the type of target,

the energy source used to measure it, and the system which captures the image. The
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SNR of the observed image drastically affected the results of the COV. When the SNR

was too low this method was not always able to determine the correct estimate of R0

and it tended to converge before the COV method was able to go through enough

iterations to remove the blurred effects of the image.

4.7.2 Integration Time Limits. The integration time or number of iterations,

on the other hand, is up to the image analyst. The COV method while extremely

accurate with a good SNR is a time consuming process. The number of iterations

is controlled by the user. As long as time is not an issue, allowing the algorithm to

perform more iterations will result in more accurate image estimations. Choosing a

smaller number of iterations could cause the algorithm to choose a larger R0 value

than it should have, resulting in very badly blurred imagery. Sparse scenes can be

processed in a matter of a few minutes but full scene data can take over a hour. This

algorithm in its current form is not appropriate for any type of real-time analysis. It

is better suited for post analysis of imagery.
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V. Conclusions and Future Work

This section details some conclusions drawn from the results of this research. Future

potential research areas are also considered below.

5.1 Conclusions

First, has been shown that the COV method works on simulated data. It

was able to effectively converge for the correct atmospheric seeing parameters and

recover estimates of the true images, which appeared similar to the actual images.

It was able to perform effectively on fully illuminated data like both the MAP and

APEX algorithms. More importantly, the COV method has been shown to work on

astronomical data where the other two methods failed.

Second, it was demonstrated that this method also worked on laboratory data.

This measured data was generated in a controlled laboratory environment. The fo-

cusing device of the imaging system was adjusted to produce a facsimile of our atmo-

sphere.

Finally, the effects of parameters such as SNR, scene types, varying seeing pa-

rameters, and exposure time were investigated. These parameters were explored in a

very cursory fashion. There is much work to be done in this area.

5.2 Future Work

There is much exploration left in the parameters above. For example, the effect

that SNR has on image reconstruction was studied but not whether there exists a

certain threshold below which this method will not perform as expected. Another area

to look at may be how the COV method performs on images that may lie somewhere

between sparse and full-scene. One area which was not researched was the effect of

OTFs with shapes that did not fit the model.

It is also important to point out that this technique was demonstrated success-

fully on electro-optical data, but by no means is it limited to this narrow band of data.

52



It may be possible to prove that the COV method will also converge on radar data,

microwaves, x-rays, etc. with the correct stopping criteria and EM update equations.
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This work will further the combined effort of AFIT and AFRL to provide enhanced space situational awareness (SSA)
and space surveillance. SSA is critical in a time when many countries possess the technology to put satellites into orbit.
Enhanced imaging technology improves the Air Force’s ability to see if foreign satellites or other space hardware are
operating in the vicinity of our own assets at geosynchronous orbit. Image deblurring or denoising is a crucial part of
restoring images that have been distorted either by movement during the capture process, using out-of-focus optics, or
atmospheric turbulence. The goal of this work is to develop a new blind deconvolution method for imaging objects at
geosynchronous orbit. It will feature an expectation maximization (EM) approach to iteratively deblur an image while
using the convergence of the image’s variance as the stopping criteria.
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